

RISK ADJUSTMENT MODELS

Al Esposito

Basics of Risk Adjustment

Prior to 2000, Medicare capitation payments were adjusted using
 demographic factors only

male, age 75-79 => 1.07

 Under risk adjustment, demographic factors are supplemented with <u>health</u> status factors

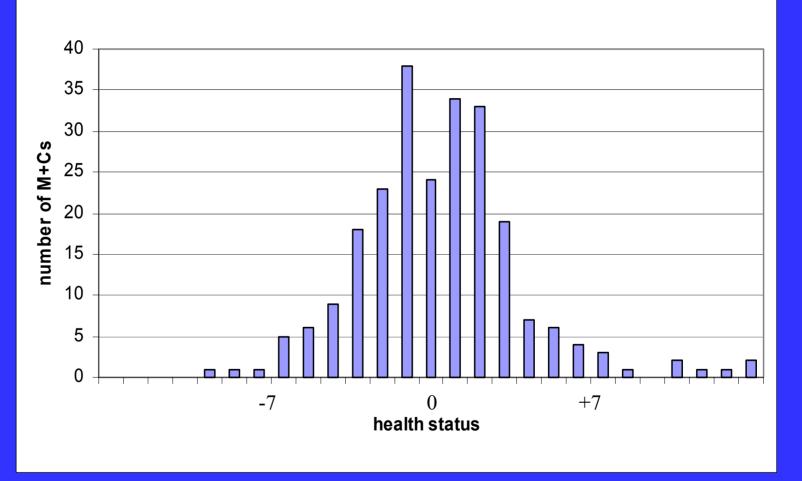
male, age 75-79 with:
no admissions => .91
kidney infection => 2.08
lung cancer => 4.14

Need for Risk Adjustment

- Improve accuracy and fairness of payments
- Promote competition based on efficiency and quality, rather than avoiding risk
- Improve incentives to enroll and manage the care of less healthy beneficiaries

Risk Adjustment Approach

- Prospective model—i.e., using base year data to predict the following year's payment
- Payment determined by each enrollee's risk factor
- Initially based on inpatient data using PIP-DCG adjuster
- Move to risk adjustment models using inpatient and ambulatory data by 2004



Inpatient Model as a First Step

- Inpatient model risk adjusts fewer beneficiaries
 - -18.6% of beneficiaries are hospitalized
 - 10-12% are placed in PIPDCGs
 - -20% of dollars are associated with PIPDCGs
- "All significant diseases" models using inpatient and ambulatory data have greater impact
 - -80% of beneficiaries have an encounter with the health care system
 - -50-60% of dollars are associated with the significant diseases

Distribution of Avg. Health Status

Health status adjustments for plans based on the PIPDCG model vary from the average by plus or minus 7 percent.

Elements of All Significant Disease Models

- Prospective
 - inpatient, physician and outpatient diagnoses from a base year are used to assign person-specific risk factors for the next year
- Clinical classification algorithms are used; some more elaborate than others
- More diagnoses generally yield higher payments
- Models include demographic factors

Risk Adjustment Options to Reduce Data Collection Burden

- Risk models do not increase payments for all reported diagnoses
 - Collect only those diagnoses that are significant
- Consider models based on a vastly reduced number of diagnoses collected in ambulatory sites

Alternative Approaches to Model Development

- Site neutral approaches:
 - All significant diseases (e.g. 100 conditions)
 - Selected significant diseases (e.g. 6 or 25 conditions)

Alternative Approaches to Model Development (cont'd)

- All inpatient plus approaches:
 - All inpatient significant diseases plus selected significant ambulatory diseases
 - -PIP plus selected significant ambulatory diseases

All Significant Diseases Approach

Pros

- most developed approach
- developers included all diseases considered clinically and statistically significant
- accuracy is good for a broad spectrum of enrollee groups and diseases
- site of service neutral

Cons

 requires broadest submission of diagnoses from ambulatory settings

Selected Significant Diseases

- Pros
 - good for a narrow spectrum of diseases
 - may be less ambulatory data intensive
 - neutral to the site of care
- Cons
 - weaker explanatory power for other diseases
 - -raises debate over diseases in model

All Inpatient Plus Approach

Pros

- models are most accurate for the 10-12% of enrollees who are hospitalized
- accurate for the selected ambulatory conditions
- may be less burden for ambulatory data

Cons

- less accurate for omitted conditions
- raises debate over diseases not in model
- amount depends on enrollee's treatment setting for many diagnoses
- incentives to hospitalize; raises one day stay issue

Risk Adjuster Approaches

Additive Model

```
Predicted cost = \$_1 (Male 65-69)
+\$_2 (Medicaid)
+...
+ \$_7 (Condition 1)
+ \$_8 (Condition 2)
+ \$_9 (Condition 3) + ....
```

In addition to demographic factors, an incremental payment is associated with each significant disease.

Risk Adjuster Approaches (cont'd)

Person Categorical Model

\$1(no significant conditions); OR

\$2(up to 3 minor acute conditions); OR

\$₃(1 major chronic condition); OR ...

In addition to demographic factors, a person is assigned to a single health category based on a cluster of conditions.

Risk Adjuster Models

- Hierarchical Condition Category (HCCs)
- Chronic Illness and Disability Payment System (CDPS)
- Ambulatory Diagnostic Group Hospital Dominant (ADG-HOSDOM)
- Clinically Detailed Risk Information System for Costs (CD-RISC)
- Clinical Risk Groups (CRGs)

More Inclusive Models Have Lower Demographic Factors

(more dollars are attached to conditions)

Number of Conditions in Model

Female	6	25	100
65-69	\$2000	\$1600	\$1200
75-79	\$3300	\$2600	\$2200
85-89	\$4800	\$3800	\$3300

Example of Total Payment Under Various Models When Multiple Conditions Are Present

	Number of Conditions in Model		
Conditions present	6	25	100
Female, age 76	\$3300	\$2600	\$2200
Heart Failure	\$5200	\$3200	\$1800
Immunity Disorders		\$4900	\$3600
Opportunistic Infections			\$4100
Hip Fracture			\$1100
Total	\$8500	\$10700	\$12800

Explanatory Power

	R-squared	
• Site neutral approaches		
 100 significant diseases 	.115	
 25 significant diseases 		.100
 6 significant diseases 		.072
 Inpatient plus approaches 		
– PIP	.064	
• plus 25 selected diseases		.105
 All inpatient significant diseases 	.085	
• plus 25 selected diseases		.103

Accuracy of Model Approaches

Predictive Ratios (\$predicted/\$actual)

	Numbe	er of C	Condi	tions
Disease Groups	PIP	6	25	100
 Heart Failure 	.72	.96	.97	.97
 Acute Myocardial Infarction 	1.78	.76	.96	.98
 Hip Fracture 	.83	.73	.85	.99
 Alcohol/Drug Dependence 	.74	.56	.74	.97

Bold indicates inclusion in the model.

Risk Adjuster Approaches

Predictive Ratios (\$predicted/\$actual)

		Number of Conditions		
Base Year Group	PIP	6	25	<u> 100</u>
expenditure quintiles				
lowest	2.10	1.85	1.47	1.23
middle	1.11	1.23	1.16	1.14
highest	0.75	0.69	0.80	0.86
0 hospital stay	1.07	1.15	1.07	1.03
1 hospital stay	1.01	0.87	0.97	1.02

Current Status of Model Development

- Staff has estimated several versions of each type of approach
- We are getting in-house and external clinical input into diseases that are best candidates for selected significant disease models
- Model developers are looking at variations of existing models

Selecting a Model

- Conceptual: Does the model make sense to clinicians, providers, and plans?
- Comparative analytic performance:
 - accuracy in predicting individual expenditures
 - accuracy in predicting for biased groups
- Incentives and appropriateness for payment applications
 - concerns about omitted diagnoses
 - site of service payment differences
- Data burden